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N O N L I N E A R  C H A R A C T E R I S T I C S  OF T H E  I N T E R A C T I O N  

OF A T U R B U L E N T  B O U N D A R Y  L A Y E R  W I T H  A W A V Y  S U R F A C E  

V. P. R~utov UDC 532.526 

A nonlinear interaction of a turbulent boundary layer with a wavy surface of a solid body or 
a liquid whose level has a deviation in the form of a traveling monochromatic wave is studied. 
For the waviness of small curvature, a calculation procedure is proposed for the amplitude 
dependences of the drag coefficient and complex elasticity which characterizes the back action 
of the flow on the surface inflection. The analysis is based on the use of an isotropic algebraic 
model of turbulent viscosity and an orthogonal system of curvilinear coordinates that follow the 
surface inflections. The interaction between the flow and the surface wave is described within 
the framework of a quasi-linear model, and a two-scale mean-flow model is used to determine 
the transverse structure of the flow in a smoothly expanding boundary layer. 

When elastic coatings interact with a boundary layer, traveling shear waves that  significantly affect the 
drag force can be generated on the surface of these coatings. Linear instabilities induced by the interaction 
of elastic coatings with a laminar boundary layer were studied in detail [1, 2]. Nonlinear effects were also 
considered for the case of a laminar flow [3, 4]. At the same time, much attention was also paid in experiments 
to the turbulent flow regime [5, 6]. The flow structure in a turbulent boundary layer over wavy surfaces was 
studied in some papers (see, for example, [7]), and the drag coefficient was determined. To derive evolution 
equations that describe the development of instability of the surface waves, however, it is necessary to know 
nonlinear characteristics of the interaction between an oscillating flow and these waves. 

The study of the back action of a turbulent boundary layer on the wave motion of the surface is of 
interest for laboratory modeling of the waves on a water surface with a turbulent wind [8]. As in the case of 
the flow over coatings, a boundary layer of finite thickness which is matched with an external potential flow 
is formed above the water surface under laboratory conditions. In this case, the question arises whether the 
laboratory modeling is adequate to the response of the atmospheric boundary layer whose velocity profile is 
usually assumed to be logarithmic at an arbitrary distance from the surface. 

In the present work, we study nonlinear characteristics of the interaction between a turbulent boundary 
layer of an incompressible flow and a wavy surface of a solid body or a liquid. The analysis is based on 
the approach developed by Jenkins [9] and Reutov and Troitskaya [10] for the description of the nonlinear 
interaction of water waves with an atmospheric (logarithmic) boundary layer. This approach includes the 
use of an orthogonal system of curvilinear coordinates, the hypothesis of isotropic turbulent viscosity, and 
a quasi-linear approximation in solving the equations of an oscillating flow. As in [10], the hydrodynamics 
equations are written in terms of the stream function and vorticity, which allows a significant speed-up of the 
convergence of the iteration process. To describe a smooth expansion of the boundary layer in the downstream 
direction, we use an approximation similar to that proposed previously for the calculation of boundary layers 
on smoothly curved airfoils [11, p. 459]. This allows us to construct the solution of the problem for a wavy 
surface on the basis of the theory of an equilibrium (self-similar) boundary layer that arises over a flat surface 
[12]. 
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Govern ing  Equa t ions .  Quas i -Linear  Approx ima t ion .  We consider a turbulent boundary layer 
over a wavy surface. The deviation of the level of this surface in the y direction of the Cartesian system of 
coordinates (z, ~) follows the law r = a cos[k(z - a)],  where a is the waviness amplitude and k and c are 
the wavenumber and the phase velocity of the traveling wave. The surface curvature is assumed to be small, 
and the downstream expansion of the boundary layer is assumed to be smooth: ka << 1, 1/(kL) << 1, and 
6/L << 1, where 6 is the boundary-layer thickness and L = 6/(d~/dz) is the scale of boundary-layer expansion. 
For large values of y the boundary layer is assumed to transform to a uniform flow with a streamwise velocity 
U(x), and the equation for the longitudinal component of momentum is UdU/dx = -dP/dx ,  where P is 
the pressure normalized to the flow density. Using the hypothesis of isotropic turbulent viscosity to close the 
turbulent flow equations, we introduce the effective (total) viscosity normalized to the density of the liquid, 

= v0 + ~t, where ~0 and ut are molecular and turbulent viscosities. 
Following [9, 10] we pass to the following system of orthogonal curvilinear coordinates (~, r/) that moves 

with the phase velocity of the surface wave: 

z - ct  = ~ - a e  - t ' t  s i n  k~; ( l a )  

y = r / +  ae-k't cos k~. (lb) 

The coordinate line ~/= 0 follows the surface deviations to an accuracy of the terms ,,,ka. The basic assumption 
about the turbulent viscosity is that it is sufficient to consider explicitly only its dependence on the "transverse" 
coordinate r/. Then the equations of two-dimensional hydrodynamics for the stream function q~ and vorticity 
• determined in the moving frame of reference take the form [10] 

+ (2) 
- + -", j - ~ + ~,m = Jx,  

where J = O(z, y)[O(~, T/) = 1 - 2kae -k'~ cos k~ + (ka) z e -2k~ is the Ja~obian of mapping of the coordinates. 
On a wavy surface for system (2) we impose the condition of continuity of the normal component of the 

velocity, which vanishes in the moving frame of reference, and the "no-slip" condition. Within the framework 
of the quasi-linear approximation used in the sequel, it is sufficient to write the boundary conditions to 
an accuracy of the terms ,-,ks, as was done by Benjamin [13]. We can ignore the tangential component of 
the velocity on the rigid surface and prescribe this component in accordance with the potential theory of 
gravitational capillary waves on the liquid surface. Taking into account that there is an induced flow with 
velocity v0 << c on the liquid surface, we obtain 

�9 ~ = - c +  v0 0 ( = 0  (3) 

Hereinafter the upper and lower coefficients in brackets refer to the solid and liquid surfaces, respectively. 
We seek the solution of system (2) in a quasi-linear approximation which relates the nonlinear effects 

of the waviness amplitude only with the mean-flow deformation [9, 10]: 

�9 = + + c.c.], X - X0( , x)  + d + c.c.], (4) 

where ~0 and X0 are the mean Cover the waviness period) components of the stream function and vorticity, ~1 
and X1 are the complex amplitudes of the first harmonic, and c.c. refers to a complex conjugate expression. To 
describe the process of a smooth (with a scale -~L) downstream expansion of the turbulent boundary layer, 
we introduce into (4) a smooth dependence of the mean and oscillating flow on the coordinate x related to ~, 
T/, and t by Eq. (la). For fixed z and ~/, the variable -~/c  plays the role of a "time lag." After substituting 
(4) into (2), the derivatives with respect to t, ~, and 7, taking into account (la), become 

0 0 0 0 0 0 0 0 
(5) 
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We note that  the effective viscosity also depends on x; hence, strictly speaking, the derivatives of v with 
respect to ~ should be retained in Eqs. (2). As is seen from (5), however, this would add small terms (with 
the derivatives of v with respect to z) that  can be ignored. 

Subst i tut ing (4) and (5) into (2), we separate out the component  -,~exp ik~ in system (2). It can 
be easily seen tha t  the flow "nonparallelism" yields allowances of the order of O[a/L, (6/L)ka]. Confining 
ourselves to an accuracy of ..,ka, we obtain a system of equations derived by Reutov and Troitskaya [10] for a 
parallel flow. To describe the  mean flow, in contrast to [10], we introduce the s tream function in the motionless 
frame of reference �9 = r + cy which, in accordance with ( lb) ,  has the mean component  @0 = r + ~  relative 
to ~. As a result, sys tem (10) from [10] takes the form 1 

ik[(~o, -c)Xl - C~IXO~] - (d~- k2)(uX1) = 2u~k2~l - 2k2ae-k'[(q)o,7-c)v,1],, 

(6) 
( d ~ - k 2 )  " 1 =  X 1 - 2 k a x o e  - '1 .  

Since there are no terms with the derivative a/Ox in (6), the oscillating flow is actually defined within the 
framework of the  locally parallel theory. 

We separate out  the  mean component  relative to ~ in Eqs. (2) and compare them with equations 
obtained in [10] for a parallel mean flow. If we confine ourselves to an accuracy of ,'..6/L and, consequently, 
cancel the allowances O[k2a2(6[L), ka2/L], additional terms are only those with the derivative O/Ox that  
arise in the theory of the  boundary  layer on a flat surface [14]. 

After these t ransformations,  Eq. (2) is integrated one t ime with respect to 77, and an arbitrary function x 
which results from the integrat ion is found using the above-mentioned equation for the  longitudinal component  
of momen tum in the  external flow. As a result, we obtain the following equations for the s tream function ~0 
and vorticity X0 of the  mean flow in a motionless coordinate system: 

0 -~x dP 
q20,t -~x qgOn -- qgO,m ~o = -- d--~ + (vX~ - FI; (7a) 

~o~ = X0 + F2, (7b) 

where Fx = kZau,~Re (~z,1 - k#~l) e -t'l +2k(ka)2u, l(~o,~ - c )  e -2in - (1/2)k Lm (~XI) and F2 = xo(ka) 2 e -2kI/-- 
ka(Rexz ) e -k'p. For O[Ox = 0 Eqs. (7) coincide with those obtained in [10] for a parallel flow, and for Fz,2 = 0 
they transform to the  P rand t l  equations for a turbulent  boundary  layer on a flat plate [14]. Wi th  account of 
the transformations (5), the  boundary conditions (3) on the wetted surface are 

(o) 0 
~0~ "~ •0 ' 0--'~ ~ 0  "~ O, r "= O, r = cka ,1=0" (8) 

According to (6) and (7), in the  potential  flow region (X0 = Xz = 0) the solution has the form ~0,7 = U(x) 
and ez "" exp ( -kr / ) .  Assuming that  at a certain level r I = 6z > 6 the difference between the flow under study 
and the potential  flow can be ignored, we write the external boundary conditions as 

~II01/ ---- U, Xl ---- 0, ~lr l  + k~x = 0 In=6j" (9) 

It should be noted  tha t  the mean-flow deformation under  the condition of waviness has an order of 
(ka) 2. If we seek the mean flow as an expansion of the per turbat ion theory relative to ka << 1, the mean-flow 
deviation from the profile in the case of a flat surface yields the terms ..,(ka) 3 in Eq. (6). At the same time, 
the quasi-linear approximat ion does not consider the contribution of the second harmonic of an oscillating 
flow, which also leads to te rms of the order of (ka) 3 in (6). Thus,  a sequential use of the per turbat ion theory 
relative to ka contradicts,  at first glance, the quasi-linear approximation. This issue was studied in [10] in 
considering the interaction of water waves with the atmospheric boundary layer. It was found that  the relative 
variation of the growth rate calculated in the quasi-linear approximation can be represented as the product  of 

lln Eqs. (6) we corrected the misprints made in [10]. 
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(ka) 2 and a large numerical  coefficient, whereas the contribution of the  second harmonic is represented as the 
product  of (ka) 2 and a numerical  coefficient not greater than unity. This numerical result can be explained 
by the fact tha t  the profile of the second harmonic is more susceptible to oscillations relative to 7/ than the 
profile of the first ( fundamental )  harmonic. Without  additional justification, it is assumed in the present work 
that  the presence of a ra ther  large coefficient at (ka) 2 in the relative increment to the growth rate and the 
drag coefficient ensures the applicability of the quasi-linear approximation.  

Bas ic  P a r a m e t e r s  o f  t h e  F low.  We introduce the displacement thickness for the boundary layer on 
a wavy surface ~* as the  thickness of the displaced layer of the potential  flow relative to the r/coordinate:  

61 

/ 
0 

where u0 - ~0~ is the  profile of the "effective" velocity determined from the mass-flow rate. In deriving 
formula (10), it is taken into account that  we can assume u0 = U in the potential  flow to an accuracy of the 
terms ...(ka) 2. Ignoring the  flow nonparallelism, we obtain a relation of the form Vl - c = (O~x~ - O(x~) / J  for 
the z-component  of the velocity in the motionless frame of reference. Since the relative allowances to the mean 
flow are severalfold greater  than  (ka) 2 within the limits of applicability of the quasi-linear approximation, it 
is possible to ignore the terms tha t  contain (ka) 2 in an explicit form when calculating Vl. We obtain 

= 40(7) + (1/2) kae Re( l  + (11) 

where ( . . . )  refers to the  mean  value over the period relative to ~. As is seen from (9) and (11), in the potential 
flow region 40 coincides with (Vl). 

To determine the  drag coefficient c I we use the known expression for the z-component  of the force 
acting per uni t  area of the wet ted  surface [11]: 7"i = -p r t l  + anr t l  + a12rt2, where p is the  surface pressure, 
a n  = 2u@ty and a12 = u(@yy - ~zs)  are the components  of the  viscous stress tensor, and nl,2 are the 
components of the normal  vector to the wetted surface (the quanti t ies T1, p, a n ,  and a12 are normalized to 
the flow density).  Taking into account tha t  the length element along the coordinate line t / =  0 is J1/2d~, we 
write the force per uni t  area of the undis turbed surface y = 0 as 

A 
1 2 1 
 c/U = f T,:/2 = - +   2y,)IT=0 (12) 

0 

(X - 2 ~ / k  is the  wavelength).  We use a procedure described in [10] for surface pressure calculation. This 
allows us to represent the  complex ampli tude of the first harmonic pl  in the form 

pl = - i  .-~ X1,1 + c2ka n=o" (13) 

Calculating a n  and al2 in the  curvilinear coordinates ~ and t / and  retaining the terms tha t  contain explicitly 
only the first power of ka, we write the drag coefficient as 

2 I" 1 1 c/  tuoxo = - ~ u o k a R e ( k -  X1,1 + X1)] (14) 
I/=0 

We prescribe the turbulent  viscosity as was done by MeIlor and Gibson [12] for the boundary layer on a 
flat surface. We assume a linear profile of turbulent  viscosity ut = mu.r /which  begins outside the buffer region 
(T! + = Tlu./uo > 30) and reaches a constant value ut = KU6* (4.  is the dynamic velocity, ze is the Khrmhn 
constant, equal to 0.4, and K is the Clauser constant, equal to 0.016). Smoothing the  resultant inflection by 
the function tanh  and using one of the known approximations for the profile u(T/) in the buffer region [15], we 
obtain 

, , 
N - U~* = R + K tanh Y [1 - exp ( -#y2R2) ] ,  (15) 

where R = 6*U/~'o is the Reynolds number,/~ is a constant factor, and Y = r~/A (A = 6*/~t is the displacement 
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thickness relative to the velocity defect and -y = u . /U) .  In the absence of waviness, the linear profile v(7/) 
corresponds to the logarithmic profile of the velocity [14] 

t t  O = l l n  r/+ + B, (16) 
u ,  cqff 

where B is a universal constant. If the viscosity is defined by Eq. (15), the law-of-the-wall (16) is approximately 
fulfilled in the domain 30 < 1/+ < (K/a~)R.  The upper boundary of this domain corresponds to the point 
of inflection in the piecewise-linear model of viscosity. Calculations of the logarithmic profile of the velocity, 
which were conducted on the basis of formula (15) with K -* oo, showed that the known value of the universal 
constant B = 5.0 is reached for/~ = 0.0019. 

To determine the dynamic velocity u.  in the boundary layer on a wavy surface, we have to find the 
longitudinal component of the viscous-turbulent flux of momentum through the external boundary of the 
buffer region 17 + = 30. Using the corresponding law of conservation (see Eq. (2) from [10]) and canceling the 
terms that contain (ka) 2 in an explicit form, we obtain 

2 1 k = ( 11x  + = . x 0 -   .ko e -  'Rex1 I,+=30" (17) 

Note that, in the boundary layer on a wavy surface, generally speaking, us, can differ from the drag force. 
We characterize the back action of an oscillating flow on the surface waves by a complex elasticity G 

[16, 17]. Its imaginary part describes the flux of energy S from the boundary layer to the surface wave: 

_ _  1 
G = Pla ' S = -(fi~t) = ~ cka 2 ImG. (18) 

Here 1~1 is the complex amplitude of the effective surface pressure i5. For a rigid surface, the flux of energy 
S is determined by the normal component of the surface stress and we should assume i~ = - ( n i T 1  + n2T2), 
where T2 is the y-component of the surface force per unit area. Calculations accurate to the terms ,,.ka show 
that the viscous normal stress makes no contribution to i5, i.e., 15x = pl to this accuracy. In accordance with 
(13) and (18) we obtain 

I m G =  -k'aa Rex1,7 ,!=0" (19) 

In an air flow over the water surface the growth rate of the surfaze waves is determined by the action 
of both normal and tangential stresses. Tangential stresses transform to normal stresses due to modulation of 
a dynamic boundary layer that  arises near the water surface. Exactly this total normal stress enters Eq. (18). 
It is found by solving the equations of the dynamic boundary layer in water under the condition of continuity 
of aij at the interface and has the form [9] ~1 = pl - b22 + ib12 (^ denotes the complex amplitude of the first 
harmonic). Retaining the terms ,,,ks in determining i5, we obtain 

t,0 
Im G = -~aa Re (Xl,t - kx1) + 4uock ~ - 2t,0kx0 I,r=0" (20) 

Below we solve the problem of calculation of the imaginary part of the dimensionless complex elasticity 
g = I m  G/(kU2),  which, according to (18), is also a normalized flux of energy to the surface wave. 

Two-Sca le  M o d e l  for  M e a n - F l o w  Ca lcu la t ion .  We assume that  a uniform (self-similar) flow 
regime is realized in the external region of the boundary layer (the "wake" region) in the absence of waviness. 
A theory of such a boundary layer was constructed by Mellor and Gibson [12]. An alternative to the solution of 
equations in partial derivatives (6) for the boundary layer on a wavy surface is the determination of the profiles 
of the stream function, velocity, and vorticity of the mean flow on the basis of a two-scale approach constructed 
by analogy with the theory of the equilibrium boundary layer. A similar analogy was used previously to 
calculate laminar boundary layers on smoothly curved surfaces [11]. 

Following [12], we choose the displacement thickness A relative to the velocity defect as the main 
(external) scale of the mean flow and introduce a dimensionless pressure gradient b = (~f*/u2.)dP/dx. In 
addition, we assume (~ = kA and C = c /u .  and introduce a parameter q = d A / d x  that characterizes the 
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boundary-layer expansion. The solution of system (6) and (7) with the boundary conditions (8) and (9) is 
sought in the form 

qlo = - u , A f ( Y )  + U~?, X0 = S n0(Y); (21a) 

~l  = ~lU* A, Xl = f~lU,/A, (21b) 

where Y = r//A(x) is the dimensionless "transverse" coordinate used in (15). We note that the derivative 
f y  = ( U - u o ) / u ,  determines the velocity profile defect u0. Substituting (21) into (7), assuming that u, = 7U, 
and ignoring the contribution of dT/dz,  we obtain the equations for the mean flow: 

d N f ~ o = ( q _ b ) ( y f y y _ T f f y y ) + b ( 2 f y _ 7 f ~ , ) + ~ . l ;  
d Y  

d2f 
d y  2 -- -(['lo + :T2), 

where 

(22a) 

(22b) 

~1 = a (ka) N y  Re (~PlY - o~1) e-aY + 2~ (ka)2Nyfio e -2aY - (1/2) a Im (~ f l l ) ,  

~'2 = ~lo(ka) 2 e-2aY - kae -aY  R e ~ l  (rio = 1/7 - f y  - C)). 

For Y = 0 and Y = 51/A, the following boundary conditions should be valid for the mean-flow fields: 

1 2c I ] 
I _ vo  [Y=0' Nil0 - ~ k a N  Re (a  - I  fhY + O1) = - ~ -  Y=o; f = 0 ,  f Y = 7  u, 

f y  = 0, f = I Iy_$1/A. 

Relation (17), which determines the dynamic velocity, takes the form 

Nno - 1 N kaRenl e -~Y = 1 [Y=30/R. 

(23a) 

(23b) 

(24) 

Apart from the boundary conditions that follow from (8) and (9), Eqs. (23) include dimensionless 
analogs of relations (10) and (14) which also have the form of the boundary conditions. For a = 0, system 
(22) reduces to the equation for f derived in [12] for an equilibrium boundary layer on a flat surface. In contrast 
to [12], we ignore the derivative dT/d:r, which yields allowances of a higher order for "flow nonparallelism," 
since the scale of variation of 7 is much greater than L. 

After passing to dimensionless variables, system (6) for an oscillating flow takes the form 

i ~ [ r 0 f h  - ~f f~y]  = ~ - a 2 ( N n 0  + 2 N y y a 2 ~ l  - 2 ~ k a e  -~'Y d [Nyro], 
d Y  

(25) 
(d -~  - a2) ~ = i l l - 2 k a e - ' Y f l 0 .  

The boundary conditions (8) and (9) yield 

Though only one scale A was explicitly used in the derivation of Eqs. (22), the mean-flow velocity 
profile actually has two scales, since the viscosity (15) defines a viscous scale vo/u, = A/R in the wall region. 
Equations (22), however, are also valid near the surface, since the contribution of the flow nonparallelism 
terms (...q, b) is small by virtue of rapid changes in the fields with respect to Y. In fact, the equations for the 
wall region coincide with the relations obtained in [10] for a parallel flow in which the longitudinal component 
of the mean total flux of momentum with respect to ( through the coordinate lines r I = const is rigorously 
retained. In a weakly nonparallel flow this component changes only slightly in the wall region and, according 
to (14), equals (1/2)ciU 2 on the surface 77 = 0. In the presence of waviness the total flux of momentum can be 
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divided into the wave component and the mean-flow contribution. Therefore, the behavior of the mean-velocity 
profile in the wall region depends substantially on the variation of the wave field. 

N u m e r i c a l  P r o c e d u r e  a n d  C a l c u l a t i o n  Resu l t s .  The solution of the boundary-value problem 
(22)-(26) should be constructed so that the prescribed "input" parameters R, b, ka, a, and C determined 
the unknown "output" parameters % q, and c I. Prior to the numerical solution, we substituted the variables 
z = In (Y + I~), where the parameter  I~ controls the diminution of the step along Y (with a fixed step along 
z). The boundary-value problem (25) and (26) for oscillating fields was solved by the method of iterations in 
which the distributions of the mean fields were taken from the previous iteration. Derivatives were replaced 
by finite differences, and the Gauss elimination technique was applied to the resultant difference equations 
with a fixed step along z (see [10]). Integration of Eqs. (22) from Y = 0 to Y = 61/A with the initial data 
(23a) determines f ,  fy]y=61/A, and the left-hand side of relation (24) as functions of the parameters % q, 
and cy, which allows us to consider conditions (23b) and (24) as a system of three algebraic equations relative 
to 7, q, and cf. This system was solved by the Newton method in which the derivatives with respect to the 
sought variables were replaced by finite differences (a three-dimensional variant of the secant method). The 
mean-flow equations (22) were integrated with respect to z using the second-order Runge--Kutta method. 

The main calculations were performed for Y0 = 5 �9 10 -4 a n d / f l / A  = 0.5 on a grid composed of 500 
equidistant points in the z direction. For a zero pressure gradient (b = 0) the boundary-layer thickness 6 
determined from the level u0 = 0.99U was roughly equal to half of the interval of integration with respect 
to Y (6/A ~_ 0.25). Its value increased for negative pressure gradients (b < 0); however, the ratio 6 /A 
approached 61/A only for b close to its extreme possible value [12] b = -0 .5 .  The effect of flow deviation 
from the potential flow at the end of this interval was verified in selective calculations with 61/A = 1 at 1000 
points. The convergence of the iteration procedure became worse as ka increased. No more than 10 to 15 
iterations were made for ka = 0.1. The Newton method for the boundary-value problem (22)-(24) converged 
usually after 2-4 iterations. 

The nonlinear characteristics of the flow depend on the conditions of increasing amplitude. Within 
the framework of the numerical procedure, the value of ka increased for constant parameters R, bl = 
(6*/U2)dP/dz = 72b, k6* = "Tot, and c/U = -7C which, in contrast to the above set of the input parameters, 
are defined via the "external" scales of the flow U and 6*. The choice of the displacement thickness 6* as 
an external parameter  was determined, in particular, by the fact that  the derivative d6*/dz defines the slope 
of the mean-flow streamlines outside the boundary layer. This allows us to assume that  the displacement 
thickness is a factor that  exhibits the least changes in passing from a smooth sector of the surface to a wavy 
sector. For small ka the growth rates of the parameters of the interaction between the boundary layer and 
waviness are quadratic in amplitude: 

g = go + gl(ka) 2, -7 = "70 + -71(ka) 2, cf = c/0 + (ka)2cll, etc. (27) 

The coefficients in expansions (27) are independent of a and determine the linear and nonlinear features 
of the flow. It is easily seen that  cfo = 2"/2o. 

In calculations of the interaction of a turbulent boundary layer with a long gravitational wave on the 
water surface, the wavenumber and the boundary-layer thickness were chosen in accordance with the data of 
[8]: k = 0.04 cm -1 and 6 ,,, 25 cm (the phase velocity was c = 1.57 m/sec). The drift flow velocity in water 
v0 was assumed equal to u .  [18]. Figure 1 shows the coefficients go and gl versus the flow velocity in the 
boundary layer above the gravitational wave (in Fig. la, curves 1' and 2' refer to cfl ,  curves 1 and 1' refer to 
6* = 4 cm, curves 2 and 2' refer to 6* = 8 cm, the solid curves correspond to bl = 0, and the dashed curves 
refer to bl = -0.0003). The value bl = -0.0003 is a significant negative pressure gradient in the range of U/c 
values considered, since the parameter b reaches half of its limiting value. The data  obtained show a weak 
influence of the negative pressure'gradient on the behavior of both linear and nonlinear parts of the complex 
elasticity. 

If in the definition of cf (14) and in the expression for I m G  (20) we retain only the contribution of the 
surface pressure, we obtain cfl = go. Therefore, the difference between go and cfl in Fig. la  is determined 
by the effect of tangential surface stresses. The ratio 6/6" depends on 6. and on the pressure gradient. In 
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particular, for the solid curve 1 this ratio increases monotonically from 6.5 to 7.5 as U/c increases. We can 
add that dependences similar to those plotted in Fig. 1 were obtained for U = const and the variation of U/c 
owing to the variation of the wavenumber. 

It is seen from Fig. 1 that  for U/c <~ 2.5 the amplitude growth rate Im G becomes positive (91 > 0), 
which corresponds to a tough excitation of the wave. The quantity 91 changes sign when the critical level 
determined by the condition u0(y) = c approaches the upper boundary of the buffer region of the boundary 
layer where u0 -~ 0.55U. A soft excitation was obtained in [10] for a logarithmic boundary layer of infinite 
thickness and the same values of k. To compare the dependence of the interaction coefficient ~ between the 
waves and the wind on u.[c, which were derived in [10], with the theory of the boundary layer of finite 
thickness, we should assume/~ = ~g[72 and u.[c = 7U[c. Thus, the behavior of the flux of energy to the 
surface waves under laboratory conditions can be different from that  under full-scale conditions. 

It is seen from Fig. 1 that  an anomalous increase of go and 91 is observed near U[c ..~ 1.4. The 
calculations showed that  this effect is manifested only for rather long waves (k6 <~ 1). The anomalous increase 
of the interaction parameters is intimately related to the finite thickness of the boundary layer, since for 
U[c ~- 1.4 the critical level turns out to be near the "inflection ~ in the effective viscosity profile (15). A dramatic 
attenuation of anomalous deviations was registered in test calculations when the logarithmic sector of the 
velocity profile was extended by a factor of 1.5-2 due to an increase of the constant K in (15). 

Similar calculations conducted for the coefficients 7o and 71 showed that the behavior of 7o corresponds 
to that known for the boundary layer on a flat surface. For example, for 6* = 4 cm and bl = 0, the coefficient 
7o monotonically decreases from 0.039 to 0.033 within the range 0.75 < U[c < 5 (Fig. 1). The nonlinear 
parameter 71 is negative, which corresponds to a decrease of u ,  in the presence of waviness. This is in 
qualitative agreement with the data of [8]. In the vicinity of U/c "" 1.4 the coefficient 71 exhibits an anomalous 
deviation toward negative values. Thus, for 6* = 4 cm and bl = 0 we obtain 71 = -0.048 for U[c = 5 and 
71 = -0.14 for U[c = 1.4. 

The calculations of the velocity profile u0 showed that,  in the presence of waviness, the parameter 
uo/U decreases within the entire interval of Y except for the boundary values 0 and 1. A buffer region, a 
logarithmic sector, and a wake region are clearly distinguished in the profile. This differs from the behavior of 
the velocity profile in a logarithmic boundary layer in which the decrease of the mean-flow velocity acquires a 
constant value with distance from the surface [I0]. The calculations showed that the substitution of (vl) for 
u0 [see (11)] practically does not alter the pattern of the mean-flow velocity-profile deformation induced by 
waviness. The substitution of (vl) for u0 in determining the displacement thickness (10) also has only a weak 
effect on the results. The most significant decrease of the mean velocity is observed for U/c "~ 1.4, i.e., in the 
region of anomalous increase of 90 and 91. This can be associated with the growth of nonlinearity resulting 
from a deeper penetration of the oscillating flow into the boundary layer. 

To estimate the effect of waviness on the mean flow we can use the profile of the viscous-turbulent 
shear stress determined by the relation on the right-hand side of relation (17) taken with an arbitraTy 7}- 
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The calculations showed that  this shear stress is easily approximated by each of the three quantities vuo,7, 
vxo, or v(vz~), which allows us to consider the shear stress as the mean-flow contribution to the longitudinal 
component of the flux of momen tum to the wavy surface. The ratio of the viscous-turbulent stress to the drag 
force (per unit area) defined as r = 2vuo,7/(cfU 2) is shown in Fig. 2 (6* = 4 cm and b] = 0, curves 1 and 
2 refer to U/c = 1.4 and 3, respectively, and the solid and dashed curves correspond to ka = 0.1 and 0.001, 
respectively). It is seen that  for ka --, 0, when the wave portion of the flux of momentum vanishes, r(0) is 
close to unity. For ka = 0.1 the value of r(0) is noticeably smaller than unity, which can be explained by the 
emergence of a positive wave component of the flux of momentum. 

The linear portion of the turbulent viscosity profile corresponds to the region 0.02 ~< ,7/6 ~< 0.15 for 
curves 1 or 0.02 <~ ,7/6 ~ 0.15 for curves 2. It follows from here that  for ka = 0.1 the quantity r varies 
comparatively weakly both in the region of existence of a linear profile of viscosity [where a logarithmic profile 
of the velocity (16) appears] and in the buffer region of the boundary layer. In this case, u2. coincides with the 
viscous component of the drag force, which is significantly lower than its total value. This behavior of r can 
be explained by weak changes in the wave flux of momentum at distances ,7 << 6 from the surface because of 
the large length of the surface wave (k6 ~< 1). 

Though the ratio uo/U decreases in the presence of waviness, the constant B can increase due to a 
decrease of u. .  Thus, for ka = 0.001 the calculations predict B ~ 6.0, which exceeds the constant B = 5.0 
for a flat surface by the value of the dimensionless velocity of the surface drift vo/u.. At the same time, the 
values B ~ 6.0 and 6.45 for U/c = 3 and 1.4, respectively, were obtained for ka = 0.1. The increase of the 
constant B is manifested much more noticeably in the experiments [8], which is possibly connected with the 
peculiarities of determination of u. .  

The calculations for a solid surface were performed for the case of slow surface waves (c << U) which 
under laboratory conditions are usually observed on viscous-elastic coatings [5, 6]. In this case, we can 
assume c - ,  0, and the results of calculation of the drag coefficient are also applicable to a stiff wavy profile. 
Figure 3 shows the ampli tude dependence of the relative growth rate of the drag coefficient s I = (c I - clo)/C.f o 
(R = 3200, bz = 0, curves 1-3 refer to k~* = 0.05, 0.8, and 2.5, respectively). It is seen that  the drag coefficient 
increases as the waviness ampli tude increases, and deviations from the quadratic law are manifested at first 
for long waves. The behavior of the linear and nonlinear characteristics of the energy exchange between the 
boundary layer and a slow wave on a rigid coating versus the wavenumber is shown in Fig. 4 (bz = 0, curves 1-4 
refer to R = 1500, 3200, 6000, and 9000). The energy inflow to the surface wave, which is determined by the 
parameter g0 > 0 in Fig. 4a, is at tenuated by the action of nonlinearity (gz < 0 in Fig. 4b). The contribution 
of the mean flow to the shear stress for a rigid surface with a comparatively small-scale waviness (k6 ~ 5) is 
shown by curves 3 in Fig. 2 (R = 3200, bz = 0, k6* = 0.8, the solid and dashed curves refer to ka = 0.1 and 
0.001, respectively). The linear sector of the viscosity profile corresponds to the range 0.035 <~ 77/6 <~ 0.15 in 
which the variation of r is comparatively small and, hence, a logarithmic velocity profile (16) is realized. The 
behavior of r shows that the attenuation of the wave portion of the flux of momentum, even for moderately 
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large k6, occurs within the buffer region. As a result, u. ~ coincides with the drag force and exceeds the force 
of viscous friction on the surface by a factor of l / r(0) .  

To elucidate the difference between the characteristics of the interaction between the boundary layer 
and the surface of a liquid or a rigid coating, we compared the results of the solution of the problem with the 
wind over long waves on the water (kg -~ 1) without drift (v0 = 0) and the problem of the flow over a rigid 
surface. No significant changes were observed for either linear or nonlinear characteristics of interaction. 

Conclus ion.  Thus, a nonlinear interaction of long surface waves on the water with a boundary layer 
of finite thickness can be qualitatively different from the interaction of these waves with the atmospheric 
boundary layer (anomalous growth of the imaginary part of the complex elasticity and transition from soft 
to tough excitation). Nonlinear increments to the complex elasticity are small for ka << 1; nevertheless, they 
are of principal importance, for example, in derivation of the evolution equations for the surface waves near 
the threshold of their stability. 

An explicit logarithmic sector of the mean-velocity profile in the boundary layer on a wavy surface 
arises in the case of long (kS ~ 1) and short (kS/> 5) waves. The dynamic viscosity defined as a parameter 
of the logarithndc profile underpredicts the drag force for the large-scale waviness and the total value of the 
drag force for the small-scale waviness. 

An important element of the proposed approach is the use of a two-scale model for mean-flow 
calculations. To evaluate the applicability of the model, we should note that the mean-flow variations caused 
by the waviness are in most cases localized on a small portion of the boundary layer near the surface. The flow 
evolution in the wall region is determined by the variation of the dynaraic velocity (for constant amplitude 
of waviness, wavenumber, and phase velocity). Therefore, the changes introduced by the wall region are 
manifested in the wake flow, which has its own scale of establishment ,,,L. In other cases, we can assume that 
this model gives reasonable estimates for nonlinear parameters of the flow response and the drag coefficient. 

The author is grateful to Yu. I. Troitskaya for useful discussions and assistance in calculations. 
This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 97-01- 

00183 and 96-15-96593). 
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